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Abpstract—The combined heat and mass transfer during the evaporation of a superheated spherical droplet

subject to an external flow field composed of its own saturated vapor, when the droplet and its surrounding

vapor contain a tracer amount of a volatile transferred species, is numerically modeled. The droplet mass

transfer model is an extension of the Kronig and Brink method to variable droplet radius. Gas-side

heat and mass transfer are treated using the quasi-steady film theory. Calculated parameteric results,

demonstrating the effects of important parameters when the partition coefficient of the transferred species
is much larger than one, are presented.

1. INTRODUCTION

In THIS paper the combined heat and mass transfer in
a single droplet subject to an external gas flow field,
and undergoing rapid evaporation, is modeled. The
droplet Reynolds number, Reg, is assumed to be of
the order of 10—-100. In this regime the droplet remains
spherical and non-oscillating, and the external flow
field induces an internal circulatory flow similar to the
Hill’s vortex flow [1]. The model is based on a direct
extension of the classical Kronig and Brink’s method
[2], where the effect of a time-dependent droplet radius
on mass diffusion inside the droplet is included. This
method can also be applied to heat transfer in evap-
orating fuel droplets.

The combined heat and mass transfer problem rep-
resents a droplet suddenly introduced into a gaseous
environment composed essentially of the droplet pure
vapor, where the pressure is lower than the saturation
pressure associated with the droplet temperature.
Such droplets can be generated due to flashing and
atomization of an initially high-pressure liquid flow-
ing into a low-pressure environment. During the mod-
eled evaporation process, droplet fragmentation due
to internal boiling is assumed not to occur. With an
assumed pure liquid, in the absence of heterogeneous
nucleation sites in the droplet, internal boiling would
require that the limit of superheat be reached inside
the droplet. The initial droplet superheat range rel-
evant to this study is well below the limit of superheat,
however. The droplet and the surrounding gas both

are assumed to contain a tracer amount of a dissolved
volatile species. The transport of radionuclides by
liquid droplets during a U-tube steam generator tube
rupture event in a pressurized water reactor [3], and
the desorption of non-condensable gases in the evap-
orator of an Open-Cycle Ocean Thermal Energy Con-
version (OC-OTEC) system [4, 5] are two examples
for the application of the stated problem. The com-
bined heat and mass transfer during the evaporation
of a droplet without an external convective flow field
was addressed in {6].

Droplets subject to external flow fields have been
extensively studied in the past [1, 7]. Droplets with
Reg =~ O(100}, in particular, have been studied for
solute extraction [8—10], and more recently in spray
evaporation and combustion [11-23]. Transfer of a
trace species during the evaporation of a droplet, how-
ever, has not been adequately studied.

2. PREVIOUS STUDIES

Droplets with sufficiently strong surface tension,
including many fluids of practical importance, remain
nearly spherical up to Reg = 600 [1]. Two major hyd-
rodynamic regimes can be identified in the Reg << 500
range. In creep flow Reg < 1, the inertial effects in the
momentum equations of both fluids can be neglected,
and the flow remains nearly symmetrical about the
equatorial plane of the sphere. For this regime ana-
lytical solutions for the flow fields in the droplet and
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NOMENCLATURE
4 Hill’s vortex strength [m—' s~'] Usr liguid velocity at droplet surface on the
B, mass transfer driving force equator fm s7']
o drag coeflicient X mole fraction.
C, specific heat [J kg™' K]
Cr frictional component of the drag Greek letters
coefficient oy, liguid thermal diffusivity =
@ mass diffusion coefficient [m? s™'] ki /prCpy [m? 577
H* partition cocfficient Y droplet radius divided by droplet
He Henry’s number, X /X, initial radius = R/R°
h coordinate scale factor £ parameter defined as Mg/ He
. specific heat of vaporization [J kg—'] ¢ variable defined as (#* cos *@)/(2n* — 1)
Ja’ modified J akobﬁnumber, y dimensionless radial coordinate,
CPL(TE—TEO)/hfg F/R
K mass transfer coefficient [kg m 2 s71] e tangential coordinate in polar
Ky thermal conductivity enhancement spherical coordinates (Fig. 1a) [R]
factor K viscosity ratio = u /tg
k thermal conductivity [W m~' K] A variable defined as 1/2¢
M normalized mass fraction, m/m} 7] dynamic viscosity [kg m™! s~ ]
m mass fraction & parameter defined as 4#*(1 —#?) sin? @
N number of grid points for mass transfer P density [kg m ]
n mass flux of the trace species T dimensionless time, fo; /(R%)*
[kg m—2 s Tom dimensionless time, 1% /{R°)*
My, evaporation mass flux (kg m =2 s™!] @ azimuthal angle in polar spherical
P2 function defined in equation (8) coordinate system [R]
Pe heat transfer Peclet number = Y stream function [m* s™!]
2 Rugg /oy O dimensionless temperature =
Pe,  mass transfer Peclet number = (T— T/ (TY —T,,).
2Rusp/D .
2 function defined in equation (9) Subscripts
R function defined in equation (10) G gas
R droplet radius [m] h hydrodynamic
Re droplet Reynolds number = L liquid
2pu R/u m mass transfer
r radial coordinate [m] s s-surface (Fig. 1b)
Sc Schmidt number = v/& sat saturation
Sh Sherwood number, defined in th thermal
equations (21) and (22) u u-surface (Fig. 1b).
T temperature [K]
4 time [s] Superscripts
7 characteristic time [sj 0 initial
U dimensionless velocity (u/ugg) high mass transfer
Ug liquid velocity along vortex lines * dummy variable
[m s oo far from the droplet.
the surrounding fluid were first obtained in [24]. At ¥, = 2A4Ar’ (R’ —r*)sin? 6, (D

higher Reg, the external flow field becomes increas-
ingly asymimetric, resulting in flow separation and the
formation of a wake behind the sphere. When
Reg > 500 the droplet will oscillate [1].

The relative motion between the droplet and the
surrounding fluid induces a circulatory motion inside
the droplet which strongly affects heat and mass trans-
fer in the droplet. The Hadamard—-Rybczynski solu-
tion [24] for creep flow predicts an internal circulatory
motion defined by the stream function :

where, in the absence of surface-active impurities :

ug
A=—
2R (k+ 1)

The streamlines representing equation (1) are
depicted schematically in Fig. la. At higher droplet
Reynolds numbers the vortex strength will be different
than equation (2): nevertheless, due to the closed
streamlines, and as long as the droplet remains spheri-
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FiG. 1. Schematic of the droplet and the gas liquid inter-
phase: (a) droplet internal circulation ; and (b) the gas—liquid
interphase.

Gas

my,

cal, equation (1) approximately applies to the inviscid
core of the droplet [25, 26].

Kronig and Brink [2] analyzed mass diffusion in a
circulating droplet with constant radius in creep flow
by using the Hadamard-Rybczynski stream func-
tions, and casting the mass diffusion equation in the
orthogonal coordinate system (&, £, ¢). Since the resi-
dence time of fluid along the closed vortices is much
shorter than the characteristic time for mass diffusion
normal to the streamlines, the transient mass diffusion
equation can be represented in a one-dimensional
form, with £ as the independent variable. Diffusion is
then independent of the vortex strength [2]. The
derived 1-D diffusion equation, however, is invalid
very close to the droplet surface, and a concentration
boundary layer forms at the droplet surface, with a
thickness of the order of R Pe,!'/? [10]. Due to the
small thickness of the concentration boundary layer,
however, Kronig and Brink’s 1-D diffusion equation
can be assumed valid up to the droplet surface [10].

Kronig and Brink’s method of using the droplet
internal streamlines as a coordinate and assuming uni-
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form concentration on a closed streamline, referred to
hereafter as the vortex model, has been successfully
applied to heat transfer analysis of evaporating drop-
lets [11-13, 16, 21]. The droplet core analysis in all
these investigations was similar to Kronig and Brink
[2], except that their orthogonal coordinate system
was (&, 4, @), where A = 1/(20) [11-13, 16, 21]. The
characteristic times for the development of quasi-
steady-state hydrodynamics, interior and exterior to
fossit fuel droplets with Reg = O(100), are
much shorter than the characteristic time for thermal
diffusicn in the droplet : therefore steady-state hydre-
dynamics can be assumed [11, 12]. The liquid-side
thermal boundary layer thickness is of the order of
R Pe'? and may not be negligible [11]. Heat and
mass transfer in evaporating droplets in the Reg =
O(10-100) range have also been modeled by numeri-
cally solving the 2-D (¥,8) conservation equations
[15, 20, 22, 23], leading to the derivation of empirical
correlations for drag and gas-side heat transfer coeffi-
cients. These numerical solutions confirm the valid-
ity of the steady-state hydrodynamic assumption in
the vortex flow model [22].

The investigations dealing with the evaporation of
fossil fuel droplets reviewed above address very hot
gaseous environments where the gas is typically sev-
eral hundred degrees K hotter than the droplet. Sens-
ible heat transfer from the gas provides the heat for
droplet evaporation. In these cases, furthermore,
property changes are important due to temperature
variations and the change in the concentration of vari-
ous components during the droplet lifetime. Neither
of these effects is significant in the problem studied
here.

3. MATHEMATICAL MODEL

3.1. General remarks

Figure 1a depicts the droplet and the internal cir-
culatory stream lines, and Fig. 1b is a schematic of
the liquid—gas interphase. The mass fraction profiles in
Fig. 1b represent conditions where transferred species
mass is transferred from the gas into the liquid, and
evaporation is negligible. As will be shown later, evap-
oration significantly modifies these profiles. The drop-
let is initially at T} > T.,, and contains a dissolved
volatile species with initial mass fraction #f « 1.
Initial droplet superheating is assumed to be smali,
however: therefore the properties are assumed
constant. At time 7= 0 the droplet is introduced
into an environment containing droplet vapor at
T8 = T,,,(P), where P is the ambient pressure. The
vapor also contains the volatile, transferred species
with mass fraction mg <« 1. The gas phase is assumed
infinitely large. No chemical reactions are assumed.
Using the droplet center as the reference point, the
velocity of gas far away from the droplet is #&, and
the droplet Reynclds number is assumed to be O(10—
100). The effect of interphase curvature on the equi-
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librium vapor pressure (the Kelvin effect) is neglected.
The flow is assumed axisymmetric.

The characteristic times associated with the devel-
opment of a steady-state gas-side boundar.y layer, apd
the development of steady-state droplet internal cir-
culation, can be estimated from

R02
thZO(( ) )
’ vg Reg

N (R
tL)h B 0 (VL REL ?

respectively [11, 21]. The characteristic heating time,
and the characteristic time for mass diffusion in the
droplet, furthermore, can be estimated from

f = O(&)

258

and

and

N (R 0)2

m = —

L.m 0( @L E
respectively [21]. For the conditions of interest in this
paper, 7., and 7 ,, are both much larger than either
I1.n and 7s;, and quasi-steady-state hydrodynamics
can be assumed.

3.2. Mass transfer
Mass conservation for the transferred species in the
droplet can be written as:

omy. o 5
Bt =+ UL 'VmL = cQLV iy . (3)

In the (&, ¢, @) coordinates, equation (3) becomes:

omy,  u, (8,0 1 dmy
or R h 3

D 1 [ 8 (hh, omy +£ heh, Omy 4
 hehch, R2|OEN h, OC oL\ h, 8¢ ’
Consistent with the foregoing discussion assume

omy /0 = 0, and since my = (£, &) :

omy _ @y omy, omy @ on ()
ot (R92\ 0tmr G O Oty )

Combining equations (4) and (5), there results:
oM, 1/ dy a& oMy
_—r -z hWh ——— L

T ¥ (drm,L )n(an hehiche —5¢

8 (heh, M,
‘aé(hg 66)' ©

y2hehh

By applying | d¢ over half of a closed streamline rep-
resenting a hemisphere (0 << § < ©/2), and noting that
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m, remains unchanged along a streamline, equation
{(6) is recast as:

oM, | R© [ dy \ oMy
Fres T 0207 (drm,L> a¢
16 @o oM,
2*,@@@?(5"@ i ) )
where
03 2 132 ain?
G e e S NS
nt 7 cos’ 8
ey
2(8) = f o 996 ©)
[ Cy*—1)°sin’ 0
) = s 8ncos® BA dé. (19)
nhort = AT (1— &)1, ()
A={0—9nH%cos?0+(2y*—1*sin" 6. (12)

Except for the second term on the left side, which
represents the effect of time dependent droplet radius,
all other terms in equation (7) are identical to Kronig
and Brink [2]. The initial condition for equation (7)
is:

M; =1, forc,; <0.

(13)

At the center of the vortices M is assumed to be a
regular function of £ [10]. Therefore, at £ =1,

28ML % ( d’y )6ML

drmr 020 Nau,, ) 02

16 69’(5)) oM (14)

Z(ﬂ(é) o8 ) &&

Equilibrium at the interphase is represented by :

P1.
M, _pGH*M“’ (15)
where, since mass fractions are small, equation (15)
can also be represented as X, = He X,
Quasi-steady-state gas-phase transfer processes are
assumed. These assumptions, as explained before, are
reasonable. Transferred species mass conservation
through the interphase gives:

)

Omiy
nznwmu_"pL‘@L or

= Aw Mg +K'G(ms—m(o}o) (16)
It can be shown that:
Omy L 16m) oM 17
or |,_x) 3R 0 |, _, (

Equations (15)—(17) are combined and cast in the
vortex model coordinates, to get, at £ = 0
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aML _ _i RO'}’
oz 16 p. 2 °
% [(@ —He)ML+M&°], (18)
K&
where [27]:
, In(1+ B
Ry = KGYI(;TH), (19)
By
ME — M,
=5 s 20
Bm Ms_(n/nw) ( )

The following correlation is applied for calculating
Ko [22]:

Shg = 2K R _ (14 B.) %7 [240.87Rely? Sclf?].
rca
@2n
It can also be shown that:
2RK, 32 oM,
Shy = =_—— , (22
LT g 3(HL—y) 9 |, P
_ 31
My =§f 28 M (&) de. (23)
4]

3.3. Heat transfer

The droplet is initially superheated, and is sur-
rounded by its own saturated vapor. Sensible heat
transfer at the droplet surface is negligible [28].

For simplicity, heat transfer in the droplet is mod-
eled using the “‘effective conduction’ model, accord-
ing to which the transient, 1-D (radial) conduction
equation is applied, while the thermal conductivity is
multiplied by an empirical factor to account for the
effect of internal circulation. This method, originally
suggested in ref. [8], has been successfully applied to
nen-oscillating droplets with internal circulation [21,
29, 30]. The thermal diffusion in the droplet is thus
represented by :

1 0Q 1 dy oQ 1 2 20
2+ e s 2 - 2l 24
v K; ot 7W"KT dt on 4?0y (17 611)’ 24
where [21]: ’
K; = 1.86+0.86tanh [2.2451log,,(Pe/30)], (25)
1
Usp = 3_211(0}0 (%%) Reg Cr, (26)
Cr = 12.69(Reg) "7 . (7))

The droplet Reynolds number, Reg, is calculated
assuming that the droplet is in free fall in normal
gravity, where :

2291
_ [ 8R(pL —pc)g |?
ug = [ 30 Cpy . (28)
The drag coefficient, Cy, is calculated from [1]:
24
Cp =— | 1+0.15(Reg)"%*7 ). (29)
ReG

It can be shown that, for the assumed droplet
conditions, the effect of the thermal resistance associ-
ated with the droplet—gas interphase is negligible.
Therefore, the initial and boundary conditions for
equation (24) are: Q =1fort<0; Q=0atn=1;
and 0Q/dn = 0 at n = 0. Finally, energy conservation
and mass continuity at the droplet surface give, at
n=1:

dy Ja oQ

- KTT an (30)
_ L ﬂ

no= -2l 3D

4. METHOD OF SOLUTION

Equation (24) was numerically solved using the
fully-implicit finite-difference technique. The spatial
derivatives were central differenced, and 75 equally-
spaced mesh points in the droplet radius were used.
The effect of increasing the number of mesh points
was tested and found to be negligibly small. Equation
(30) was integrated using Euler’s method. A small
time-step size was used at the beginning of each cal-
culation (typically representing At = 10~7) to provide
better accuracy for the fast initial transient. It was,
however, increased during each numerical run, typi-
cally to 107° near the end of each calculation.

Equation (7) was also numerically solved using the
fully-implicit finite-difference technique with equally-
spaced mesh points in the £ coordinate, and applying
central differencing to the spatial derivatives. For
consistency, the time-step At was chosen identical
to the one used in heat transfer analysis; namely,
At = At D1 fey. The number of mesh points was
500 and was found to provide adequate numerical
convergence.

Numerical values of functions 2 (&), 2(&), and #(&)
are needed at all grid points for the numerical solution
of equation (7). These were separately calculated by
numerical integration of equations (8)—(10), by the
trapezoidal rule, using A{ = 10"° step size. Cal-
culations were performed for & = 200, 300 and 500.
The grids were uniform sized, therefore (&), 2(&),
and £(&) were calculated atall &, = 1 —i Aé fori =0,
1,2,..., N—1, where A = 1/N. Since lim 2(&) = «©
when & — 0, 2(0) = 10° was assumed. It is emphasized
that, for each N value, tables for 22(&), 2(&), and (&)
need to be calculated and stored only once. Calculated
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Table 1. Numerical values of the func-
tion #(&)

24
0.0
4.2027 x 1072
8.4894 % 1072
1.2879 = 10 !
1.7390 x 107!
2.203 x< 107!
2.6835x 107!
3.1851 < 10!
3.7155x 10!
4.2923x 107"

o :

POOOoOoC OO -
~bbhhoauroo

values of # (&) are summarized in Table 1. Values of
2(&) and 2(&) can be found in ref. [2].

5. RESULTS AND DISCUSSION

To establish the correctness of the solution method,
mass transfer calculation results of Brignell [10] were
reproduced by applying Efg — oo (constant drop-
let radius) and Ay = constant at » = 1 (constant
concentration at droplet surface), with good agree-
ment. These solutions, in the limit of T — oo, gave
Sh, — 179, in agreement with ref. [2]. Parametric
results relevant to the transfer of radioiodine during
the evaporation of relatively large droplets during a
U-tube steam generator tube rupture (SGTR) event
in a pressurized water reactor are presented below.
However, directly-applicable experimental or analyti-
cal results are not available for comparison.

The properties chosen for the results to be presented
are for a superheated water droplet, with R° = 100
um, undergoing evaporation in an ambient pressure
of 70 atm. Therefore p; = 740 kg m™3, pg = 36.5 kg
m~2, A, = 1.505x 10°T kg !, and oy = 1.43 x 107" m?
s~!. The properties of the transferred species were
varied parametrically, representing the estimated
transport properties of iodine in water and steam.
The release of radioiodine is an important concern in
certain nuclear reactor incidents, in particular during
a U-tube steam generator tube rupture (SGTR) inci-
dent in pressurized water reactors. At 70 atm which
represents the typical operating pressure in the sec-
ondary side of a steam generator, for iodine,
Py 240107 * m? s~ and Pg = 5.0x 107" m? s
are estimated [3]. The magnitude of H*, however, is
not accurately known, and may depend on the water
pH and iodine concentration [31]. The prototypical
value has been estimated to be of the order of 10*-10*
for parametric and sensitivity calculations [3]. The
assumed properties were thus varied in the range
0 °<2, <107* m? s7'; 1077<@g<10"°> m2
s!, and 50 < H* € 5 x 10°. The primary coolant in a
pressurized water reactor is subcooled water at typi-
cally 150 atmosphere pressure. The initial droplet
superheat associated with this example is therefore
=~ 10-30 K. Thus, the droplet initial superheat was
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F1G. 2. Variation of droplet size and Reynolds number with
time: (a) dimensionless droplet radius; and (b) droplet
Reynolds number.

varied in the range 0.02 < 6, << 50 K in order to exam-
ine the trends and limits of the results.

Figure 2a and b depicts the variations, with time,
of the droplet dimensionless radius and Reynolds
number, respectively, with the initial droplet super-
heat temperature as the parameter. As noted, evap-
oration is essentially completed at 7 = 0.1, and Reg
remains in the 10-100 range. The predicted dimen-
sionless temperature histories indicated very small
effects of the droplet initial superheat.

The predicted variations of the droplet mean mass
fraction, M, with time are shown in Fig. 3, where the
droplet initial superheat is maintained constant, and
ME and H* are both varied parametrically. A,
remains approximately unchanged early in the tran-
sient when significant evaporation is underway, where
M, is insensitive to the magnitudes of MEZ or H* due
to the slow mass diffusion in the droplet. Following
the completion of evaporation at 7 = 0.1, the par-
ameter determining the direction of mass transfer is:

Pcd*MZ
pLM;,
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F1G. 3. The effects of partition coeflicient and the gas ambient

mass fraction on the mean droplet mass fraction

(T¢ T, =20K): (a) Mg = 0.01; (b) MZ = 0.1; and (c)
MZ = 10.

El

which is approximately equal to ¢ here since My ~ 1.
With & > 1 mass transfer takes place from the gas
into the droplet, and vice versa. As a result, for
MZ = 0.01, for example, with H* = 30 and 500,
desorption takes place from the droplet, and for
H* = 5000 mass transfer takes place from the gas
into the droplet. The duration of the transient mass
transfer period leading to an equilibrium between the
droplet and the surrounding vapor, represented in the

2293

(a) 2.0

1.8

1.6

ML 1.4 i

(b) 2.0:
18 TO -

1.6

T T T

127

10k
g 0.2K

Py Y ) S S Y I S T IS NS
0.0 0.2 ¢4 0.6 0.8 1.0

&

(C) 2.0 r
1.8 i—

1.6 -

1.4

Tf - Tsat =50K

12
. 20K 2K

T~ 0.2K

ol 011
0.0 0.2 0.4 0.6 0.8 1.0

g

Fi1G. 4. The effects of initial droplet superheat and gas

ambient mass fraction on droplet mass fraction profiles

(H* =500, MZ =0.01): (a) t=0.01; (b) T=0.1; and
()t =1.0

1o0f

figures by a horizontal line, monotonically increases
with increasing H*.

Typical mass fraction profiles in the droplet are
shown in Fig. 4, where £ = 1 and O represent the center
of the vortices and the droplet surface, respectively
(see Fig. 1a). Mass fraction distributions on the vor-
tices are depicted at three time snapshots for a tran-
sient where & = 0.25, indicating that in the absence of
evaporation mass desorption should take place {rom
the droplet. Due to the evaporation, however, mass
fraction in the droplet outer layers initially increases.
This increase is because the mass fraction of the trans-
ferred species in the evaporated mass, which is deter-
mined by equilibrium at the interphase, see equation
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1.5

Fi1G. 5. The effect of initial droplet superheat on the mean
droplet mass fraction (H* = 500, Mg = 0.01).

(15), is lower than initial droplet mass fraction. A
higher initial droplet superheat results in a higher
evaporation mass flux, leading to a more significant
initial increase in the mass fraction in the droplet. The
desorbed gas, which in the case of a stagnant droplet
would accumulate in a layer blanketing the droplet
and strongly affecting its mass transfer behavior [6],
is blown away consistent with the quasi-steady bound-
ary layer modeling of the gas-side mass transfer
process. Following the termination of the evaporation
the diffusion process in the droplet approaches a
quasi-steady-state represented by a relatively flat mass
fraction profile (Fig. 4¢). The temporal variations of
M, for these droplets are shown in Fig. 5 and confirm
that the effect of the droplet initial superheat on the
droplet mass transfer process is strong for a sig-
nificantly long time after evaporation has terminated
ataround t & 0.1, and disappears only when the drop-
let approaches equilibrium with the surrounding
vapor.

Figure 6a shows the effect of liquid-side mass diffu-
sivity on the temporal variations of Af;. Note that
@, = 2.4x10® m? s~ represents the physical prob-
lem modeled here. Due to the small gas-side mass
diffusivity, increasing 2, by four orders of magnitude
does not noticeably affect the overall transient mass
transfer, indicating the gas-side controlled nature of
the process. Decreasing &, by an order of magnitude,
however, renders the liquid- and gas-side mass trans-
fer resistances comparable and significantly reduces
the mass transfer rate. The gas-side controlled nature
of the process is further confirmed by Fig. 6b, which
indicates that the droplet mass transfer is quite sen-
sitive to the gas-side mass diffusivity.

6. CONCLUDING REMARKS

The combined heat and mass transfer in an evap-
orating droplet with internal circulation was modeled
by extending the method of Kronig and Brink to vari-
able droplet radius. The gas-side heat and mass trans-
fer were treated using the quasi-steady film model.
Parametric calculations relevant to the transport of

S. M. GHI1AASIAAN and D. A. EGHBALI

(a) 1.5

1.2}

0.3 [

D‘o L i sty Lt ol 14
0001 0.01 0.1 1 10 100

(b} 1.5

5x10 M m? g 5x107°m? /s

i

*~“ ~ ~

1.2}

03 -
P B; =5x107m? /s

0.0 L vim
0.001 0.01 0.1 1

T

F1G. 6. The effects of the mass diffusion coefficients on the

mean droplet mass fraction : (a) the effect of iquid-side mass

diffusion coefficient (H* = 500, M = 0.01, T? — T,,, = 20K,

Ds = 5%x107"m?s1); and (b) the effect of gas-side mass

diffusion coefficient (H* = 500, ME =0.01, T) — T... = 20K,
D =24x107" m*s™ ).

T S ST NG I R T T |

10 100 1000

iodine during a U-tube steam generator tube rupture
event in a pressurized water reactor were presented.
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